login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087422
Number of terms in the expansion of Product(x_i + x_{i+1} + ... + x_j) over 1 <= i < j <= n.
2
1, 1, 2, 8, 55, 567, 7958, 142396, 3104160, 79813513
OFFSET
0,3
COMMENTS
The sum of the coefficients in the expansion of this product are the superfactorials A000178. - Robert G. Wilson v, Aug 02 2005
EXAMPLE
a(3) = 8 because the expansion of (x+y)(y+z)(x+y+z) = x^2y + x^2z + 2xy^2 + 3xyz + xz^2 + y^3 + 2y^2z + yz^2 has 8 terms.
MAPLE
a:= n-> nops(expand(mul(mul(add(x[k], k=i..j), i=1..j-1), j=2..n))):
seq(a(n), n=0..8); # Alois P. Heinz, Jul 07 2023
MATHEMATICA
f[1]=1; f[n_] := Block[{lst = Take[{a, b, c, d, e, f, g, h, i}, n], s = 1}, Do[s = s*Times @@ Plus @@@ Partition[lst, i, 1], {i, 2, n}]; Length@Expand@s]; Do[ Print@ f@n, {n, 9}] (* Robert G. Wilson v, Sep 18 2006 *)
CROSSREFS
Cf. A000178.
Sequence in context: A377098 A380020 A134954 * A081667 A117496 A117564
KEYWORD
nonn,more
AUTHOR
Alex Postnikov (apost(AT)math.mit.edu), Oct 22 2003
EXTENSIONS
a(8) from Robert G. Wilson v, Apr 26 2005
a(9) from Vaclav Kotesovec, Apr 09 2021
a(0)=1 prepended by Alois P. Heinz, Jul 07 2023
STATUS
approved