|
|
A199398
|
|
XOR of the first n odd numbers.
|
|
2
|
|
|
1, 2, 7, 0, 9, 2, 15, 0, 17, 2, 23, 0, 25, 2, 31, 0, 33, 2, 39, 0, 41, 2, 47, 0, 49, 2, 55, 0, 57, 2, 63, 0, 65, 2, 71, 0, 73, 2, 79, 0, 81, 2, 87, 0, 89, 2, 95, 0, 97, 2, 103, 0, 105, 2, 111, 0, 113, 2, 119, 0, 121, 2, 127, 0, 129, 2, 135, 0, 137, 2, 143, 0, 145, 2, 151, 0, 153, 2, 159, 0, 161, 2, 167, 0, 169, 2, 175, 0, 177, 2, 183, 0, 185, 2, 191
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1 + 2*x + 6*x^2 - 2*x^3 + x^4)/((1-x^2)*(1-x^4)).
|
|
EXAMPLE
|
a(2) = 1 XOR 3 = 2; a(3) = 1 XOR 3 XOR 5 = 7; a(4) = 1 XOR 3 XOR 5 XOR 7 = 0.
|
|
MAPLE
|
a := proc(n) local u, b, w, k;
u := 1; w := 1; b := true;
for k from 2 to n do
u := u + 2;
w := u + `if`(b, -w, +w);
b := not b;
od; w end:
|
|
MATHEMATICA
|
With[{c=Range[1, 201, 2]}, Table[BitXor@@Take[c, n], {n, 100}]] (* Harvey P. Dale, Nov 19 2011 *)
|
|
PROG
|
(PARI) a(n)=if(n==1, 1, bitxor(a(n-1), 2*n-1))
(Python)
from operator import xor
from functools import reduce
|
|
CROSSREFS
|
Cf. A126084 (XOR of first n primes).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|