login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199397
Binary XOR of 3^k as k varies from 0 to n.
3
1, 2, 11, 16, 65, 178, 619, 2784, 4929, 24482, 47371, 133872, 659713, 1196754, 5945771, 8408000, 34643073, 94509378, 313886731, 1475558352, 2552700993, 12739900146, 24581737195, 70102639264, 350315469377, 639249412322, 3139708751627, 4623469310128, 18666316402561
OFFSET
0,2
COMMENTS
Appears to be a self-convolution of an integer sequence (true for at least the initial 761 terms).
LINKS
EXAMPLE
a(2) = 1 XOR 3 = 2; a(3) = 1 XOR 3 XOR 9 = 11; a(4) = 1 XOR 3 XOR 9 XOR 27 = 16.
MAPLE
A[0]:= 1:
for n from 1 to 40 do
A[n]:= Bits:-Xor(A[n-1], 3^n)
od:
seq(A[i], i=0..40); # Robert Israel, Nov 02 2015
MATHEMATICA
FoldList[BitXor, 3^Range[0, 28]] (* Vladimir Reshetnikov, Nov 02 2015 *)
PROG
(PARI) {a(n)=if(n<0, 0, bitxor(a(n-1), 3^n))}
CROSSREFS
Cf. A199396.
Sequence in context: A257283 A091211 A306278 * A012019 A012185 A012253
KEYWORD
nonn,base
AUTHOR
Paul D. Hanna, Nov 05 2011
STATUS
approved