login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198670
Decimal expansion of the least x>0 that gives the absolute minimum of cos(x)+cos(2x)+cos(3x).
2
1, 2, 9, 2, 9, 4, 3, 0, 5, 8, 5, 0, 5, 4, 2, 6, 6, 6, 5, 2, 2, 5, 6, 3, 1, 1, 9, 5, 4, 6, 9, 1, 3, 5, 4, 8, 5, 4, 3, 4, 6, 2, 9, 7, 1, 5, 0, 0, 4, 7, 2, 3, 7, 7, 8, 6, 7, 0, 2, 1, 6, 2, 0, 7, 4, 3, 6, 7, 3, 2, 9, 0, 0, 6, 1, 7, 1, 9, 5, 6, 5, 8, 8, 0, 6, 2, 0, 1, 6, 0, 5, 4, 6, 1, 0, 7, 6, 4, 3
OFFSET
1,2
COMMENTS
See A196361 for a guide to related sequences.
EXAMPLE
x=1.2929430585054266652256311954691354...
min(f(x))=-1.3155651547204494123522707...
MATHEMATICA
n = 3; f[t_] := Cos[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
v = 2 Pi - t /. Part[x, 2]
RealDigits[u] (* A196361 *)
RealDigits[v] (* A198670 *)
Plot[s[t], {t, -3 Pi, 3 Pi}]
RealDigits[ ArcSin[ Sqrt[7 + Sqrt[7]/2]/3], 10, 99] // First (* Jean-François Alcover, Feb 15 2013 *)
CROSSREFS
Cf. A196361.
Sequence in context: A171546 A268682 A010699 * A074916 A228375 A188966
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 28 2011
STATUS
approved