login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196361
Decimal expansion of the absolute minimum of cos(t) + cos(2t) + cos(3t).
8
1, 3, 1, 5, 5, 6, 5, 1, 5, 4, 7, 2, 0, 4, 4, 9, 4, 1, 2, 3, 5, 2, 2, 7, 0, 7, 5, 0, 9, 4, 3, 5, 1, 1, 9, 6, 2, 2, 2, 1, 1, 7, 8, 3, 0, 6, 7, 2, 5, 0, 7, 9, 6, 7, 6, 3, 9, 1, 7, 9, 0, 4, 1, 5, 3, 4, 8, 4, 2, 5, 2, 5, 0, 4, 6, 7, 1, 1, 0, 5, 7, 0, 1, 6, 0, 1, 0, 1, 8, 5, 9, 4, 5, 6, 3, 6, 3, 1, 5
OFFSET
1,2
COMMENTS
The function f(x) = cos(x) + cos(2x) + ... + cos(nx), where n >= 2, attains an absolute minimum at some c between 0 and Pi. Related sequences (with graphs in Mathematica programs):
n x min(f(x))
= ======= =========
2 A140244 -9/8
LINKS
Idris Mercer, On a function related to Chowla's cosine problem, arXiv:1206.5012v1 [math.CA], June 21 2012.
FORMULA
Equals (17+7*sqrt(7))/27. [Jonathan Vos Post, Jun 21 2012]
EXAMPLE
x = 1.2929430585054266652256311954691354...
min(f(x)) = -1.3155651547204494123522707...
MATHEMATICA
n = 3; f[t_] := Cos[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
v = 2 Pi - t /. Part[x, 2]
RealDigits[u] (* A196361 *)
RealDigits[v] (* A198670 *)
Plot[s[t], {t, -3 Pi, 3 Pi}]
-(17 + 7*Sqrt[7])/27 // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)
CROSSREFS
Cf. A198670.
Sequence in context: A256615 A201767 A375061 * A213613 A327296 A213612
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 28 2011
STATUS
approved