Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 15 2013 09:34:27
%S 1,2,9,2,9,4,3,0,5,8,5,0,5,4,2,6,6,6,5,2,2,5,6,3,1,1,9,5,4,6,9,1,3,5,
%T 4,8,5,4,3,4,6,2,9,7,1,5,0,0,4,7,2,3,7,7,8,6,7,0,2,1,6,2,0,7,4,3,6,7,
%U 3,2,9,0,0,6,1,7,1,9,5,6,5,8,8,0,6,2,0,1,6,0,5,4,6,1,0,7,6,4,3
%N Decimal expansion of the least x>0 that gives the absolute minimum of cos(x)+cos(2x)+cos(3x).
%C See A196361 for a guide to related sequences.
%e x=1.2929430585054266652256311954691354...
%e min(f(x))=-1.3155651547204494123522707...
%t n = 3; f[t_] := Cos[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
%t x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
%t v = 2 Pi - t /. Part[x, 2]
%t RealDigits[u] (* A196361 *)
%t RealDigits[v] (* A198670 *)
%t Plot[s[t], {t, -3 Pi, 3 Pi}]
%t RealDigits[ ArcSin[ Sqrt[7 + Sqrt[7]/2]/3], 10, 99] // First (* _Jean-François Alcover_, Feb 15 2013 *)
%Y Cf. A196361.
%K nonn,cons
%O 1,2
%A _Clark Kimberling_, Oct 28 2011