

A198586


a(n) = (4^A001651(n+1)  1)/3: numbers (4^k1)/3 for k > 1, not multiples of 3.


3



5, 85, 341, 5461, 21845, 349525, 1398101, 22369621, 89478485, 1431655765, 5726623061, 91625968981, 366503875925, 5864062014805, 23456248059221, 375299968947541, 1501199875790165, 24019198012642645, 96076792050570581, 1537228672809129301
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers coprime to 6 producing 2 odd numbers in the Collatz iteration.
Numbers appearing in A198585 (sorted and duplicates removed). These numbers occur in A002450, numbers of the form (4^k1)/3, for k = 2, 4, 5, 7, 8, 10, ... (note that k a multiple of 3 does not appear).
A124477 \ {0,1} is a subset: for these n, 3n+1 = 2^(p3) with p > 3 prime, whence also n !== 0 (mod 3).  M. F. Hasler, Oct 16 2018
These are exactly the odd nonmultiples of 3 such 3n+1 = 2^m for some m, i.e., n = (2^m1)/3. This is possible iff m = 2k, so we get n = (4^k1)/3. Then n == 0 (mod 3) <=> 4^k == 1 (mod 9) <=> k == 0 (mod 3) <=> k not in A001651. This yields the FORMULA. (Multiples of 3 are excluded because the original definition implied that the terms are in the Collatzorbit of another odd number, i.e., of the form n = (3x+1)/2^r, which is impossible for x a multiple of 3.)  M. F. Hasler, Oct 16 2018


LINKS

T. D. Noe, Table of n, a(n) for n = 1..100
Index entries for linear recurrences with constant coefficients, signature (1,64,64).


FORMULA

a(n) = (4^A001651(n+1)  1)/3.  M. F. Hasler, Oct 16 2018
From Colin Barker, Jan 17 2020: (Start)
G.f.: x*(5 + 80*x  64*x^2) / ((1  x)*(1  8*x)*(1 + 8*x)).
a(n) = a(n1) + 64*a(n2)  64*a(n3) for n>3.
a(n) = (1 + (8)^n + 3*8^n) / 3.
(End)


MATHEMATICA

e = 19; ex = Complement[Range[2, 3*e], 3*Range[e]]; (4^ex  1)/3
(* Second program: *)
Rest@ Map[(4^#  1)/3 &, LinearRecurrence[{1, 1, 1}, {1, 2, 4}, 21]] (* Michael De Vlieger, Oct 17 2018 *)


PROG

(PARI) is(n)=gcd(n, 6)==1&&(n=3*n+1)>>valuation(n, 2)==1 \\ M. F. Hasler, Oct 16 2018
(PARI) A198586(n)=4^(3*n\2+1)\3 \\ M. F. Hasler, Oct 16 2018
(PARI) Vec(x*(5 + 80*x  64*x^2) / ((1  x)*(1  8*x)*(1 + 8*x)) + O(x^20)) \\ Colin Barker, Jan 17 2020
(MAGMA) [4^(3*n div 2 + 1) div 3: n in [1..25]]; // Vincenzo Librandi, Oct 20 2018


CROSSREFS

Cf. A001651, A002450, A124477, A198584.
Sequence in context: A048143 A216420 A137083 * A121290 A201797 A012743
Adjacent sequences: A198583 A198584 A198585 * A198587 A198588 A198589


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, Oct 30 2011


EXTENSIONS

Definition corrected by M. F. Hasler, Oct 16 2018


STATUS

approved



