login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198354 Decimal expansion of greatest x having 4*x^2+x=3*cos(x). 3
6, 5, 5, 9, 9, 6, 4, 2, 4, 4, 5, 2, 3, 9, 1, 5, 4, 8, 0, 7, 3, 1, 0, 7, 1, 3, 0, 8, 6, 9, 5, 9, 7, 5, 3, 4, 3, 6, 2, 2, 5, 1, 1, 8, 1, 0, 8, 9, 5, 4, 2, 1, 0, 3, 4, 8, 3, 4, 8, 2, 4, 0, 6, 8, 3, 3, 7, 7, 2, 5, 6, 3, 0, 6, 8, 6, 8, 4, 6, 5, 6, 9, 0, 5, 6, 9, 8, 8, 7, 7, 5, 5, 8, 7, 5, 2, 2, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -0.84250907415961557669109359901490911...

greatest x: 0.655996424452391548073107130869590...

MATHEMATICA

a = 4; b = 1; c = 3;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -1, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -.9, -.8}, WorkingPrecision -> 110]

RealDigits[r1] (* A198353 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110]

RealDigits[r2] (* A198354 *)

CROSSREFS

Cf. A197737.

Sequence in context: A010497 A167918 A070860 * A195956 A336814 A019850

Adjacent sequences:  A198351 A198352 A198353 * A198355 A198356 A198357

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 06:57 EDT 2021. Contains 347703 sequences. (Running on oeis4.)