login
A198353
Decimal expansion of least x having 4*x^2+x=3*cos(x).
3
8, 4, 2, 5, 0, 9, 0, 7, 4, 1, 5, 9, 6, 1, 5, 5, 7, 6, 6, 9, 1, 0, 9, 3, 5, 9, 9, 0, 1, 4, 9, 0, 9, 1, 1, 9, 8, 2, 9, 9, 6, 0, 2, 0, 0, 3, 7, 6, 2, 1, 2, 8, 2, 1, 7, 8, 5, 2, 9, 0, 5, 0, 6, 1, 5, 6, 6, 0, 7, 4, 9, 9, 8, 1, 0, 2, 1, 8, 5, 9, 6, 5, 1, 2, 5, 2, 4, 3, 6, 9, 6, 7, 1, 3, 1, 3, 6, 1, 8
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.84250907415961557669109359901490911...
greatest x: 0.655996424452391548073107130869590...
MATHEMATICA
a = 4; b = 1; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.9, -.8}, WorkingPrecision -> 110]
RealDigits[r1] (* A198353 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110]
RealDigits[r2] (* A198354 *)
CROSSREFS
Cf. A197737.
Sequence in context: A114321 A154434 A222301 * A010523 A231534 A348908
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved