login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070860 Decimal expansion of (-1)*c(1) where, in a neighborhood of zero, Gamma(x) = 1/x + c(0) + c(1)*x + c(2)*x^2 + ... (Gamma(x) denotes the Gamma function). 1
6, 5, 5, 8, 7, 8, 0, 7, 1, 5, 2, 0, 2, 5, 3, 8, 8, 1, 0, 7, 7, 0, 1, 9, 5, 1, 5, 1, 4, 5, 3, 9, 0, 4, 8, 1, 2, 7, 9, 7, 6, 6, 3, 8, 0, 4, 7, 8, 5, 8, 4, 3, 4, 7, 2, 9, 2, 3, 6, 2, 4, 4, 5, 6, 8, 3, 8, 7, 0, 8, 3, 8, 3, 5, 3, 7, 2, 2, 1, 0, 2, 0, 8, 6, 1, 8, 2, 8, 1, 5, 9, 9, 4, 0, 2, 1, 3, 6, 4, 0, 0, 0, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

FORMULA

c(1) = (EulerGamma^2 - zeta(2))/2 = -0.65587807152025388... ( c(0) = -EulerGamma where EulerGamma is the Euler-Mascheroni constant (A001620)).

EXAMPLE

0.65587807152025388107701951514539048127976638047858434729236244568387...

MATHEMATICA

RealDigits[(Zeta[2] - EulerGamma^2)/2, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)

PROG

(PARI) -(Euler^2-zeta(2))/2

(MAGMA) R:= RealField(100); (Pi(R)^2 - 6*EulerGamma(R)^2)/12; // G. C. Greubel, Sep 05 2018

CROSSREFS

Sequence in context: A137727 A010497 A167918 * A198354 A195956 A019850

Adjacent sequences:  A070857 A070858 A070859 * A070861 A070862 A070863

KEYWORD

cons,nonn

AUTHOR

Benoit Cloitre, May 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 14:45 EDT 2019. Contains 328019 sequences. (Running on oeis4.)