login
A070860
Decimal expansion of (-1)*c(1) where, in a neighborhood of zero, Gamma(x) = 1/x + c(0) + c(1)*x + c(2)*x^2 + ... (Gamma(x) denotes the Gamma function).
1
6, 5, 5, 8, 7, 8, 0, 7, 1, 5, 2, 0, 2, 5, 3, 8, 8, 1, 0, 7, 7, 0, 1, 9, 5, 1, 5, 1, 4, 5, 3, 9, 0, 4, 8, 1, 2, 7, 9, 7, 6, 6, 3, 8, 0, 4, 7, 8, 5, 8, 4, 3, 4, 7, 2, 9, 2, 3, 6, 2, 4, 4, 5, 6, 8, 3, 8, 7, 0, 8, 3, 8, 3, 5, 3, 7, 2, 2, 1, 0, 2, 0, 8, 6, 1, 8, 2, 8, 1, 5, 9, 9, 4, 0, 2, 1, 3, 6, 4, 0, 0, 0, 4, 8
OFFSET
0,1
REFERENCES
S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135
LINKS
FORMULA
c(1) = (EulerGamma^2 - zeta(2))/2 = -0.65587807152025388... ( c(0) = -EulerGamma where EulerGamma is the Euler-Mascheroni constant (A001620)).
EXAMPLE
0.65587807152025388107701951514539048127976638047858434729236244568387...
MATHEMATICA
RealDigits[(Zeta[2] - EulerGamma^2)/2, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
PROG
(PARI) -(Euler^2-zeta(2))/2
(Magma) R:= RealField(100); (Pi(R)^2 - 6*EulerGamma(R)^2)/12; // G. C. Greubel, Sep 05 2018
CROSSREFS
Sequence in context: A137727 A010497 A167918 * A198354 A195956 A336814
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, May 24 2003
STATUS
approved