login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198277
a(n) is the smallest prime such that exactly n prime pairs (p,q) exist with a(n) = p * q + p + q.
4
2, 11, 23, 71, 239, 719, 2879, 5039, 1439, 10079, 37799, 126719, 55439, 110879, 181439, 191519, 166319, 635039, 514079, 665279, 1330559, 907199, 3243239, 831599, 2948399, 6320159, 4989599, 15301439, 14137199, 5266799, 11531519, 8315999, 23284799, 17463599, 45208799, 52390799, 34594559, 111767039, 95633999, 117976319, 70685999, 68468399
OFFSET
0,1
COMMENTS
A067432(A049084(a(n))) = n and A067432(A049084(m)) <> n for m < a(n).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..115
Reinhard Zumkeller, Illustration of initial terms
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a198277 n = a000040 . (+ 1) . fromJust $ elemIndex n a067432_list
(PARI) ct(n)=sumdiv(n+1, d, if(d^2>n, 0, isprime(d-1)&&isprime(n\d)))
v=vector(60); forprime(p=2, 1e9, t=ct(p); if(t && !v[t], v[t]=p; print(t" "p))); v \\ with 0's for unknown; Charles R Greathouse IV, Jul 24 2013
CROSSREFS
Sequence in context: A344032 A338225 A106974 * A218046 A342185 A217309
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 23 2011
EXTENSIONS
a(27)-a(33) from Donovan Johnson, Oct 24 2011
a(34)-a(41) from Charles R Greathouse IV, Jul 24 2013
STATUS
approved