login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198280
Number of 2n X 6 0..2 arrays with values 0..2 introduced in row major order and each element equal to exactly two horizontal and vertical neighbors.
1
2, 14, 100, 662, 4588, 31718, 219060, 1516006, 10490668, 72598710, 502455316, 3477498838, 24068002412, 166577135174, 1152898456372, 7979341139206, 55225944246124, 382225190106390, 2645425190166548, 18309297185224566
OFFSET
1,1
COMMENTS
Column 3 of A198285.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -2*a(n-2) -20*a(n-3) -145*a(n-4) +68*a(n-5) +492*a(n-6) +512*a(n-7) +64*a(n-8) -2048*a(n-9).
Empirical g.f.: 2*x*(1 - x - 4*x^2 - 35*x^3 + 31*x^4 + 116*x^5 + 148*x^6 - 576*x^8) / (1 - 8*x + 2*x^2 + 20*x^3 + 145*x^4 - 68*x^5 - 492*x^6 - 512*x^7 - 64*x^8 + 2048*x^9). - Colin Barker, May 14 2018
EXAMPLE
Some solutions for n=4:
..0..0..1..1..0..0....0..0..0..0..1..1....0..0..1..1..2..2....0..0..0..0..1..1
..0..0..1..1..0..0....0..1..1..0..1..1....0..0..1..1..2..2....0..2..2..0..1..1
..2..2..0..0..1..1....0..1..1..0..2..2....1..1..0..0..0..0....0..2..2..0..2..2
..2..2..0..0..1..1....0..0..0..0..2..2....1..1..0..2..2..0....0..0..0..0..2..2
..0..0..1..1..0..0....1..1..2..2..1..1....2..2..0..2..2..0....2..2..1..1..1..1
..0..0..1..1..0..0....1..1..2..2..1..1....2..2..0..0..0..0....2..2..1..0..0..1
..2..2..0..0..1..1....2..2..0..0..2..2....1..1..2..2..1..1....0..0..1..0..0..1
..2..2..0..0..1..1....2..2..0..0..2..2....1..1..2..2..1..1....0..0..1..1..1..1
CROSSREFS
Cf. A198285.
Sequence in context: A037516 A037719 A158811 * A360319 A074620 A185010
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 23 2011
STATUS
approved