login
A197848
Decimal expansion of greatest x having x^2+2x=4*cos(x).
3
8, 8, 2, 0, 7, 4, 3, 6, 6, 1, 1, 8, 4, 7, 4, 9, 8, 0, 2, 1, 9, 8, 7, 3, 9, 5, 5, 2, 2, 3, 9, 4, 3, 7, 4, 9, 1, 5, 7, 0, 7, 7, 8, 0, 8, 0, 9, 9, 9, 0, 8, 6, 6, 5, 3, 2, 6, 4, 6, 6, 2, 7, 7, 5, 0, 1, 2, 1, 6, 7, 1, 9, 8, 9, 9, 7, 5, 8, 7, 6, 4, 4, 5, 0, 6, 3, 7, 1, 5, 5, 9, 1, 3, 1, 5, 9, 6, 6, 0
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.6989977519984890831842928796985548...
greatest x: 0.88207436611847498021987395522394374915...
MATHEMATICA
a = 1; b = 2; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
RealDigits[r1] (* A197847 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .88, .89}, WorkingPrecision -> 110]
RealDigits[r2] (* A197848 *)
CROSSREFS
Cf. A197737.
Sequence in context: A351210 A199597 A366149 * A224875 A242588 A105193
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 20 2011
STATUS
approved