login
A197849
Decimal expansion of least x having x^2-2x=-2*cos(x).
3
1, 0, 4, 8, 5, 5, 8, 3, 5, 9, 4, 9, 0, 4, 9, 4, 0, 9, 5, 7, 5, 8, 5, 6, 5, 2, 6, 4, 0, 4, 5, 4, 9, 3, 1, 9, 3, 1, 5, 3, 0, 9, 0, 2, 5, 3, 2, 8, 2, 2, 4, 6, 8, 1, 8, 8, 4, 3, 1, 1, 0, 2, 4, 1, 5, 1, 3, 5, 8, 8, 9, 5, 6, 0, 0, 5, 9, 0, 8, 9, 1, 7, 5, 2, 4, 4, 2, 1, 8, 2, 9, 9, 7, 0, 9, 5, 4, 0, 1
OFFSET
1,3
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 1.048558359490494095758565264045...
greatest x: 2.667028464105801792635542129...
MATHEMATICA
a = 1; b = -2; c = -2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 0, 3}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A197849 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110]
RealDigits[r2] (* A197850 *)
CROSSREFS
Cf. A197737.
Sequence in context: A154912 A133921 A021210 * A292466 A246856 A113969
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved