login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224875
Array A(n,k), n > 0, k=1,2,3, read by rows such that A(n,i) + A(n,j) is a square for i <> j with A(n,1) = n.
1
1, 8, 8, 2, 2, 2, 3, 22, 78, 4, 21, 60, 5, 20, 44, 6, 19, 30, 7, 2, 2, 8, 1, 8, 9, 40, 216, 10, 39, 186, 11, 38, 158, 12, 37, 132, 13, 36, 108, 14, 2, 2, 15, 34, 66, 16, 33, 48, 17, 8, 8, 18, 7, 18, 19, 6, 30, 20, 5, 44, 21, 4, 60, 22, 3, 78, 23, 2, 2, 24
OFFSET
1,2
COMMENTS
Problem No. 40 from P. Erdős (see the first reference). The problem is "can we find for each positive integer k, k integers a1, a2, ..., ak such that the sums ai + aj are squares?” This problem is possible for k <= 4.
In this sequence we consider k = 3, a1 = n and a2 minimum.
LINKS
P. Erdős, Some unsolved problems, Publ. Inst. Hung. Acad. Sci. 6 (1961), 221-259.
P. Erdős, Quelques problèmes de théorie des nombres (in French), Monographies de l'Enseignement Mathématique, No. 6, pp. 81-135, L'Enseignement Mathématique, Université, Geneva, 1963.
EXAMPLE
Array A(n,k) begins:
[1, 8, 8]
[2, 2, 2]
[3, 22, 78]
[4, 21, 60]
[5, 20, 44]
...
Row 4 = [4, 21, 60] because 4 + 21 = 5^2, 4 + 60 = 8^2 and 21 + 60 = 9^2.
MAPLE
with(numtheory): T:=array(1..121):k:=1:nn:=121:C:=array(1..nn):for i from 1 to nn do:C[i]:=i^2:od:for n from 1 to nn do:ii:=0:for a from 1 to nn while(ii=0) do: aa:=C[a]-n: for b from 1 to nn while(ii=0) do: bb:=C[b]-n:if aa>0 and bb>0 and sqrt(aa+bb)=floor(sqrt(aa+bb)) then ii:=1:T[k]:=n: T[k+1]:=aa: T[k+2]:=bb:k:=k+3:else fi:od:od:od:print(T):
CROSSREFS
Sequence in context: A199597 A366149 A197848 * A242588 A105193 A178678
KEYWORD
nonn,tabf
AUTHOR
Michel Lagneau, Jul 23 2013
STATUS
approved