login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array A(n,k), n > 0, k=1,2,3, read by rows such that A(n,i) + A(n,j) is a square for i <> j with A(n,1) = n.
1

%I #29 Sep 16 2017 00:35:59

%S 1,8,8,2,2,2,3,22,78,4,21,60,5,20,44,6,19,30,7,2,2,8,1,8,9,40,216,10,

%T 39,186,11,38,158,12,37,132,13,36,108,14,2,2,15,34,66,16,33,48,17,8,8,

%U 18,7,18,19,6,30,20,5,44,21,4,60,22,3,78,23,2,2,24

%N Array A(n,k), n > 0, k=1,2,3, read by rows such that A(n,i) + A(n,j) is a square for i <> j with A(n,1) = n.

%C Problem No. 40 from P. Erdős (see the first reference). The problem is "can we find for each positive integer k, k integers a1, a2, ..., ak such that the sums ai + aj are squares?” This problem is possible for k <= 4.

%C In this sequence we consider k = 3, a1 = n and a2 minimum.

%H Michel Lagneau, <a href="/A224875/b224875.txt">Table of triples (n, b, c) for n = 1..1000</a>

%H P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1961-22.pdf">Some unsolved problems</a>, Publ. Inst. Hung. Acad. Sci. 6 (1961), 221-259.

%H P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1963-14.pdf">Quelques problèmes de théorie des nombres</a> (in French), Monographies de l'Enseignement Mathématique, No. 6, pp. 81-135, L'Enseignement Mathématique, Université, Geneva, 1963.

%e Array A(n,k) begins:

%e [1, 8, 8]

%e [2, 2, 2]

%e [3, 22, 78]

%e [4, 21, 60]

%e [5, 20, 44]

%e ...

%e Row 4 = [4, 21, 60] because 4 + 21 = 5^2, 4 + 60 = 8^2 and 21 + 60 = 9^2.

%p with(numtheory): T:=array(1..121):k:=1:nn:=121:C:=array(1..nn):for i from 1 to nn do:C[i]:=i^2:od:for n from 1 to nn do:ii:=0:for a from 1 to nn while(ii=0) do: aa:=C[a]-n: for b from 1 to nn while(ii=0) do: bb:=C[b]-n:if aa>0 and bb>0 and sqrt(aa+bb)=floor(sqrt(aa+bb)) then ii:=1:T[k]:=n: T[k+1]:=aa: T[k+2]:=bb:k:=k+3:else fi:od:od:od:print(T):

%K nonn,tabf

%O 1,2

%A _Michel Lagneau_, Jul 23 2013