login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195256
O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1)*x^n/(1+n*x)^n.
3
1, 4, 20, 104, 568, 3296, 20576, 139840, 1044416, 8617472, 78605824, 790252544, 8709555200, 104581771264, 1359831461888, 19038714208256, 285585008091136, 4569377309327360, 77679482978041856, 1398230968482660352, 26566389500682174464
OFFSET
0,2
COMMENTS
Compare the g.f. to: W(x)^4 = Sum_{n>=0} 4*(n+4)^(n-1)*x^n/n! where W(x) = LambertW(-x)/(-x).
Compare to a g.f. of A000522: Sum_{n>=0} (n+1)^(n-1)*x^n/(1+n*x)^n, which generates the total number of arrangements of a set with n elements.
FORMULA
a(n) = (n-1)!*Sum_{k=1..n} 4^k/(k-1)! for n>0, with a(0)=1.
a(n) ~ 4*exp(4) * (n-1)!. - Vaclav Kotesovec, Oct 10 2020
EXAMPLE
O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 104*x^3 + 568*x^4 + 3296*x^5 +...
where
A(x) = 1 + 4*x/(1+x) + 4*6*x^2/(1+2*x)^2 + 4*7^2*x^3/(1+3*x)^3 + 4*8^3*x^4/(1+4*x)^4 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, 4*(m+4)^(m-1)*x^m/(1+m*x+x*O(x^n))^m), n)}
(PARI) {a(n)=if(n==0, 1, (n-1)!*sum(k=1, n, 4^k/(k-1)!))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2011
STATUS
approved