login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195256 O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1)*x^n/(1+n*x)^n. 3
1, 4, 20, 104, 568, 3296, 20576, 139840, 1044416, 8617472, 78605824, 790252544, 8709555200, 104581771264, 1359831461888, 19038714208256, 285585008091136, 4569377309327360, 77679482978041856, 1398230968482660352, 26566389500682174464 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare the g.f. to: W(x)^4 = Sum_{n>=0} 4*(n+4)^(n-1)*x^n/n! where W(x) = LambertW(-x)/(-x).

Compare to a g.f. of A000522: Sum_{n>=0} (n+1)^(n-1)*x^n/(1+n*x)^n, which generates the total number of arrangements of a set with n elements.

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(n) = (n-1)!*Sum_{k=1..n} 4^k/(k-1)! for n>0, with a(0)=1.

a(n) ~ 4*exp(4) * (n-1)!. - Vaclav Kotesovec, Oct 10 2020

EXAMPLE

O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 104*x^3 + 568*x^4 + 3296*x^5 +...

where

A(x) = 1 + 4*x/(1+x) + 4*6*x^2/(1+2*x)^2 + 4*7^2*x^3/(1+3*x)^3 + 4*8^3*x^4/(1+4*x)^4 +...

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, 4*(m+4)^(m-1)*x^m/(1+m*x+x*O(x^n))^m), n)}

(PARI) {a(n)=if(n==0, 1, (n-1)!*sum(k=1, n, 4^k/(k-1)!))}

CROSSREFS

Cf. A000522, A195254, A195255, A195257.

Sequence in context: A291089 A192619 A026305 * A131786 A061709 A254537

Adjacent sequences:  A195253 A195254 A195255 * A195257 A195258 A195259

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 11:25 EDT 2022. Contains 356187 sequences. (Running on oeis4.)