login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1)*x^n/(1+n*x)^n.
3

%I #7 Oct 10 2020 08:25:34

%S 1,4,20,104,568,3296,20576,139840,1044416,8617472,78605824,790252544,

%T 8709555200,104581771264,1359831461888,19038714208256,285585008091136,

%U 4569377309327360,77679482978041856,1398230968482660352,26566389500682174464

%N O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1)*x^n/(1+n*x)^n.

%C Compare the g.f. to: W(x)^4 = Sum_{n>=0} 4*(n+4)^(n-1)*x^n/n! where W(x) = LambertW(-x)/(-x).

%C Compare to a g.f. of A000522: Sum_{n>=0} (n+1)^(n-1)*x^n/(1+n*x)^n, which generates the total number of arrangements of a set with n elements.

%F a(n) = (n-1)!*Sum_{k=1..n} 4^k/(k-1)! for n>0, with a(0)=1.

%F a(n) ~ 4*exp(4) * (n-1)!. - _Vaclav Kotesovec_, Oct 10 2020

%e O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 104*x^3 + 568*x^4 + 3296*x^5 +...

%e where

%e A(x) = 1 + 4*x/(1+x) + 4*6*x^2/(1+2*x)^2 + 4*7^2*x^3/(1+3*x)^3 + 4*8^3*x^4/(1+4*x)^4 +...

%o (PARI) {a(n)=polcoeff(sum(m=0,n,4*(m+4)^(m-1)*x^m/(1+m*x+x*O(x^n))^m),n)}

%o (PARI) {a(n)=if(n==0,1,(n-1)!*sum(k=1,n,4^k/(k-1)!))}

%Y Cf. A000522, A195254, A195255, A195257.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 13 2011