login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192619
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x)^(1/2))^2/(1 - x^n*A(x)^(1/2))^2.
1
1, 4, 20, 104, 556, 3048, 17064, 97216, 562036, 3289836, 19461448, 116178600, 699045176, 4235292680, 25816944176, 158223753376, 974389668364, 6026623271840, 37420762694588, 233179517592232, 1457706542138344, 9139698522931008
OFFSET
0,2
FORMULA
Self-convolution of A190862.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 20*x^2 + 104*x^3 + 556*x^4 + 3048*x^5 +...
The g.f. A = A(x) satisfies:
A = (1+x*A^(1/2))^2/(1-x*A^(1/2))^2 * (1+x^2*A^(1/2))^2/(1-x^2*A^(1/2))^2 * (1+x^3*A^(1/2))^2/(1-x^3*A^(1/2))^2 *...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+x^m*A^(1/2))^2/(1-x^m*A^(1/2)+x*O(x^n))^2)); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+sum(m=1, n, x^m*A^(m/2)*prod(k=1, m, (1+x^(k-1))/(1-x^k+x*O(x^n)))))^2); polcoeff(A, n)}
CROSSREFS
Cf. A190862.
Sequence in context: A104550 A089382 A291089 * A026305 A195256 A131786
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 06 2011
STATUS
approved