login
A194137
a(n) = Sum_{j=1..n} floor(j*sqrt(6)); n-th partial sum of Beatty sequence for sqrt(6).
1
2, 6, 13, 22, 34, 48, 65, 84, 106, 130, 156, 185, 216, 250, 286, 325, 366, 410, 456, 504, 555, 608, 664, 722, 783, 846, 912, 980, 1051, 1124, 1199, 1277, 1357, 1440, 1525, 1613, 1703, 1796, 1891, 1988, 2088, 2190, 2295, 2402, 2512, 2624, 2739, 2856
OFFSET
1,1
MATHEMATICA
c[n_] := Sum[Floor[j*Sqrt[6]], {j, 1, n}];
c = Table[c[n], {n, 1, 90}]
PROG
(Python)
from sympy import integer_nthroot
def A194137(n): return sum(integer_nthroot(6*j**2, 2)[0] for j in range(1, n+1)) # Chai Wah Wu, Mar 17 2021
CROSSREFS
Cf. A022840 (Beatty sequence for sqrt(6)).
Sequence in context: A267874 A194143 A194138 * A226292 A026052 A049616
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 17 2011
STATUS
approved