login
a(n) = Sum_{j=1..n} floor(j*sqrt(6)); n-th partial sum of Beatty sequence for sqrt(6).
1

%I #11 Mar 17 2021 19:52:49

%S 2,6,13,22,34,48,65,84,106,130,156,185,216,250,286,325,366,410,456,

%T 504,555,608,664,722,783,846,912,980,1051,1124,1199,1277,1357,1440,

%U 1525,1613,1703,1796,1891,1988,2088,2190,2295,2402,2512,2624,2739,2856

%N a(n) = Sum_{j=1..n} floor(j*sqrt(6)); n-th partial sum of Beatty sequence for sqrt(6).

%t c[n_] := Sum[Floor[j*Sqrt[6]], {j, 1, n}];

%t c = Table[c[n], {n, 1, 90}]

%o (Python)

%o from sympy import integer_nthroot

%o def A194137(n): return sum(integer_nthroot(6*j**2,2)[0] for j in range(1,n+1)) # _Chai Wah Wu_, Mar 17 2021

%Y Cf. A022840 (Beatty sequence for sqrt(6)).

%K nonn

%O 1,1

%A _Clark Kimberling_, Aug 17 2011