

A193864


Decimal expansion of 2^43112609  1, the 47th Mersenne prime A000668(47).


3



3, 1, 6, 4, 7, 0, 2, 6, 9, 3, 3, 0, 2, 5, 5, 9, 2, 3, 1, 4, 3, 4, 5, 3, 7, 2, 3, 9, 4, 9, 3, 3, 7, 5, 1, 6, 0, 5, 4, 1, 0, 6, 1, 8, 8, 4, 7, 5, 2, 6, 4, 6, 4, 4, 1, 4, 0, 3, 0, 4, 1, 7, 6, 7, 3, 2, 8, 1, 1, 2, 4, 7, 4, 9, 3, 0, 6, 9, 3, 6, 8, 6, 9, 2, 0, 4, 3, 1, 8, 5, 1, 2, 1, 6, 1, 1, 8, 3, 7, 8, 5, 6, 7, 2, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

12978189,1


COMMENTS

This number is very large, containing 12978189 digits. Edson Smith discovered this prime number on August 26, 2008 within the GIMPS framework. Landon Curt Noll calculated the decimal expansion of this prime number. It is a Mersenne prime.
This 47th Mersenne prime (cf. A000043) is remarkable since it was found before two smaller Mersenne primes, one in the following month (September 2008) and another one in April 2009. It remained the largest known prime until January 2013, when the 48th known Mersenne prime was found.  M. F. Hasler, May 22 2014


LINKS

Table of n, a(n) for n=12978189..12978293.
GIMPS, List of Known Mersenne Prime Numbers
OEIS Wiki, Mersenne primes (with a list of similiar sequences)


FORMULA

2^43112609  1.


EXAMPLE

316470269330255923143453723949(...12978129 digits omitted...)887478265780022181166697152511


MATHEMATICA

IntegerDigits[2^43112609  1][[1 ;; 105]] (* T. D. Noe, Aug 09 2011 *)


PROG

(PARI) A193864_list(Nmax)={default(realprecision, Nmax+5); digits(10^frac(43112609*log(2)/log(10))\.1^Nmax)} \\ Use digits(x)=eval(Vec(Str(x))) in older PARI versions.  M. F. Hasler, Mar 04 2012, updated May 22 2014
(PARI) write("a193864.txt", 2^43112609  1) \\ Georg Fischer, Mar 19 2019


CROSSREFS

Cf. A000043 (main entry), A000668, A028335 (lengths).
Sequence in context: A213783 A163330 A021320 * A066840 A127754 A328508
Adjacent sequences: A193861 A193862 A193863 * A193865 A193866 A193867


KEYWORD

nonn,cons,fini


AUTHOR

Kausthub Gudipati, Aug 07 2011


EXTENSIONS

Name changed by Georg Fischer, Mar 19 2019


STATUS

approved



