login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193798
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(3x+2)^n and q(n,x)=1+x^n.
2
1, 1, 1, 2, 3, 5, 4, 12, 9, 25, 8, 36, 54, 27, 125, 16, 96, 216, 216, 81, 625, 32, 240, 720, 1080, 810, 243, 3125, 64, 576, 2160, 4320, 4860, 2916, 729, 15625, 128, 1344, 6048, 15120, 22680, 20412, 10206, 2187, 78125, 256, 3072, 16128, 48384, 90720
OFFSET
0,4
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1....1
2....3....5
4....12...9.....25
8....36...54....27...125
16...96...216...216..81...625
MATHEMATICA
z = 8; a = 3; b = 2;
p[n_, x_] := (a*x + b)^n
q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193798 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193799 *)
CROSSREFS
Sequence in context: A023395 A316655 A318848 * A101409 A271862 A309373
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 05 2011
STATUS
approved