login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A193563
a(0) = 0, a(n) = n^2 * (a(n-1) + 1).
2
0, 1, 8, 81, 1312, 32825, 1181736, 57905113, 3705927296, 300180111057, 30018011105800, 3632179343801921, 523033825507476768, 88392716510763573961, 17324972436109660496552, 3898118798124673611724425, 997918412319916444601453056
OFFSET
0,3
FORMULA
From Seiichi Manyama, Jan 05 2024: (Start)
a(n) = (n!)^2 * Sum_{k=0..n} (k/k!)^2.
a(n) = n^2 * A006040(n-1) for n > 0. (End)
MAPLE
seq(n!^2*add(1/k!^2, k=0..n-1), n=0..16); # Mark van Hoeij, May 13 2013
PROG
(PARI) a=[0]; for(n=1, 20, a=concat(a, (a[#a]+1)*n^2)); a \\ Charles R Greathouse IV, Jul 31 2011
CROSSREFS
Cf. A006040, A007526 (multiply by n instead of n^2), A180255.
Sequence in context: A092366 A022519 A138439 * A026845 A305770 A145921
KEYWORD
nonn,easy
AUTHOR
Meherzad Lahewala, Jul 31 2011
STATUS
approved