|
|
A026845
|
|
Sum_{mu a partition of n} (f^mu/n!)^{-2} where f^mu is the number of standard Young tableaux of shape mu.
|
|
1
|
|
|
1, 8, 81, 1424, 32152, 1144937, 53178768, 3360267976, 268737034880, 26735641360265, 3222856389284352, 463078022054303432, 78131995260953112576, 15295767841794798044432, 3438384401028669096232665, 879589866427669147125523584, 254053056142392070125392290952
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Arises from counting coverings of a genus g=2 Riemann surface - expansion of generating function A_g(q) = sum_{n>=0} a_{n,g} q^n where a_{n,g} = sum_{mu a partition of n} (f^mu/n!)^{2-2g}; note that A_0(q) = e^q and A_1(q) = prod_{i>=1} 1/(1-q^i).
|
|
LINKS
|
|
|
MATHEMATICA
|
(* version 4.0 *) Needs["DiscreteMath`Combinatorica`"]; Table[Tr[(n!/ (NumberOfTableaux /@ Partitions[n]))^2], {n, 20}] (* Wouter Meeussen, Sep 30 2010 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|