Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 27 2022 21:18:48
%S 1,8,81,1424,32152,1144937,53178768,3360267976,268737034880,
%T 26735641360265,3222856389284352,463078022054303432,
%U 78131995260953112576,15295767841794798044432,3438384401028669096232665,879589866427669147125523584,254053056142392070125392290952
%N Sum_{mu a partition of n} (f^mu/n!)^{-2} where f^mu is the number of standard Young tableaux of shape mu.
%C Arises from counting coverings of a genus g=2 Riemann surface - expansion of generating function A_g(q) = sum_{n>=0} a_{n,g} q^n where a_{n,g} = sum_{mu a partition of n} (f^mu/n!)^{2-2g}; note that A_0(q) = e^q and A_1(q) = prod_{i>=1} 1/(1-q^i).
%H Alois P. Heinz, <a href="/A026845/b026845.txt">Table of n, a(n) for n = 1..60</a>
%t (* version 4.0 *) Needs["DiscreteMath`Combinatorica`"]; Table[Tr[(n!/ (NumberOfTableaux /@ Partitions[n]))^2],{n,20}] (* _Wouter Meeussen_, Sep 30 2010 *)
%Y Cf. A047874. - _Wouter Meeussen_, Sep 30 2010
%K nonn
%O 1,2
%A _Bruce E. Sagan_, Apr 06 2002
%E Terms 8 to 20 added by _Wouter Meeussen_, Sep 30 2010