This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193471 Square array A(n,k) (n>=1, k>=0) read by antidiagonals: A(n,0) = 0 and A(n,k) is the least integer > A(n,k-1) that can be expressed as a sum of the first prime numbers divided by n. 1
 0, 0, 2, 0, 1, 5, 0, 43, 5, 10, 0, 7, 127, 14, 17, 0, 1, 25, 167, 29, 28, 0, 1145, 2, 40, 213, 50, 41, 0, 4, 3758, 20, 82, 321, 80, 58, 0, 20, 11, 3932, 32, 110, 387, 119, 77, 0, 71, 41, 34, 4300, 88, 142, 457, 164, 100, 0, 1, 107, 55, 113, 4490, 212, 178, 531, 220, 129, 0, 7, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1275 EXAMPLE n\k  0   1   2    3    4     5     6    7 ----------------------------------------- 1 |  0    2    5   10   17   28   41   58  A007504 2 |  0    1    5   14   29   50   80  119 3 |  0   43  127  167  213  321  387  457  A112270 4 |  0    7   25   40   82  110  142  178 5 |  0    1    2   20   32   88  212  296  A112271 6 |  0 1145 3758 3932 4300 4490 4684 5084 7 |  0    4   11   34  113  284  441  634  A112272 8 |  0   20   41   55   71   89  158  185 MAPLE A193471_rect := proc(n, k) local j, i, L; L := NULL; j := 0; while nops([L]) < k do add(ithprime(i)/n, i=1..j); if type(%, integer) then L := L, % fi; j := j+1 od; L end: seq(print(A193471_rect(n, 8)), n = 1..8); MATHEMATICA max = 12; rect[n_, k_] := Module[{j, i, L, s}, L = {}; j = 0; While[Length[L]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 14:24 EDT 2019. Contains 326284 sequences. (Running on oeis4.)