The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193457 Paradigm shift sequence with procedure length p=5. 10
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 100, 125, 150, 180, 216, 252, 294, 343, 392, 448, 512, 625, 750, 900, 1080, 1296, 1512, 1764, 2058, 2401, 2744, 3136, 3750, 4500, 5400, 6480, 7776, 9072, 10584, 12348, 14406 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple action, bundle all existing actions (which requires p=5 steps), or apply the current bundled action. The first use of a novel bundle erases (or makes obsolete) all prior actions. How many total actions (simple) can be applied in n time steps?"
1. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with Procedural Lengths p=1 and 2, respectively.
2. The optimal number of pastes per copy, as measured by the geometric growth rate (p+z root of z), is z = 6. [Non-integer maximum between 6 and 7.]
3. The function a(n) = maximum value of the product of the terms k_i, where Sum (k_i) = n+ 5 - 5*i_max
4. All solutions will be of the form a(n) = m^b * (m+1)^d
LINKS
Jonathan T. Rowell, Solution Sequences for the Keyboard Problem and its Generalizations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.10.7.
FORMULA
a(n) =
a(13) = 16 [C=2 below]
a(24) = 100 [C=3 below]
a(46) = 3750 [C=5 below]
a(57) = 22500 [C=6 below]
a(68) = 135000 [C=7 below]
a(1:68) = m^(C-R) * (m+1)^R
where C = floor((n+8)/11) [min C=1]
m = floor ((n+5)/C)-5, and R = n+5 mod C
a(n>=69) = 5^b * 6^(C-b-d) * 7^d
where C = floor((n+8)/11)
R = n+8 mod 11
b = max(0, 3-R); d = max(0, R-3)
Recursive: for n>=80, a(n)=6*a(n-11)
EXAMPLE
For n=30, C=floor(38/11)=3, m=floor(35/3)-5 = 11-5 = 6, and R= (35 mod 3) = 2; therefore a(30) = 6^(3-2)*7^2 = 6*7^2 =294.
For n=13, use the general formula with C=2 (rather than C=1), with R = (18 mod 2) = 0, m=floor(18/2)-5=9-5=4; therefore a(13)=4^2*5^0=16.
For n=80, C = floor(88/11)=8, R=(88 mod 11) = 0, b = max(0,3)=3, and d=max(0,-3)=0; therefore a(80) = 5^3*6^(8-3)*7^0 = 5^3*6^5 = 972000
CROSSREFS
A000792 (n>=1), A178715, A193286, A193455, A193456, and A193457 are paradigm shift sequences for p=0,1,...5 respectively.
Sequence in context: A004841 A293715 A276393 * A161950 A111470 A227508
KEYWORD
nonn
AUTHOR
Jonathan T. Rowell, Jul 27 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 13:47 EDT 2024. Contains 373445 sequences. (Running on oeis4.)