login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193053 a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16. 14
1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For an origin of this sequence, see the numerical spiral illustrated in the Links section.

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Bruno Berselli, Illustration of initial terms.

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).

E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - G. C. Greubel, Aug 19 2017

a(n) = A195020(n) + n + 1.

a(n)   - a(-n-1)  = A047336(n+1).

a(n+1) - a(-n)    = A113804(n+1).

a(n+2) - a(n)     = A047385(n+3).

a(n+4) - a(n)     = A113803(n+4).

a(2*n) + a(2*n-1) = A069127(n+1).

a(2*n) - a(2*n-1) = A016813(n).

a(2*n+1) - a(2*n) = A016777(n+1).

a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).

MATHEMATICA

Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)

LinearRecurrence[{1, 2, -2, -1, 1}, {1, 5, 10, 17, 26}, 60] (* Harvey P. Dale, Jun 19 2020 *)

PROG

(PARI) for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));

(MAGMA) [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];

CROSSREFS

Cf. A195020 (vertices of the numerical spiral in link).

Cf. A001106, A022264, A033572, A144555, A152760, A158482, A158485, A185019, A195021, A195023-A195030, A195320, A198017 [incomplete list].

Sequence in context: A342553 A229997 A277186 * A340047 A098749 A034676

Adjacent sequences:  A193050 A193051 A193052 * A193054 A193055 A193056

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Oct 20 2011 - based on remarks and sequences by Omar E. Pol

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 06:15 EDT 2021. Contains 346369 sequences. (Running on oeis4.)