login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193053
a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.
14
1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
OFFSET
0,2
COMMENTS
For an origin of this sequence, see the numerical spiral illustrated in the Links section.
FORMULA
O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - G. C. Greubel, Aug 19 2017
a(n) = A195020(n) + n + 1.
a(n) - a(-n-1) = A047336(n+1).
a(n+1) - a(-n) = A113804(n+1).
a(n+2) - a(n) = A047385(n+3).
a(n+4) - a(n) = A113803(n+4).
a(2*n) + a(2*n-1) = A069127(n+1).
a(2*n) - a(2*n-1) = A016813(n).
a(2*n+1) - a(2*n) = A016777(n+1).
a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).
MATHEMATICA
Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 5, 10, 17, 26}, 60] (* Harvey P. Dale, Jun 19 2020 *)
PROG
(PARI) for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
(Magma) [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
CROSSREFS
Cf. A195020 (vertices of the numerical spiral in link).
Sequence in context: A342553 A229997 A277186 * A340047 A098749 A034676
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Oct 20 2011 - based on remarks and sequences by Omar E. Pol
STATUS
approved