login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.
14

%I #51 Sep 08 2022 08:45:58

%S 1,5,10,17,26,36,49,62,79,95,116,135,160,182,211,236,269,297,334,365,

%T 406,440,485,522,571,611,664,707,764,810,871,920,985,1037,1106,1161,

%U 1234,1292,1369,1430,1511,1575,1660,1727,1816,1886,1979,2052,2149,2225,2326

%N a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.

%C For an origin of this sequence, see the numerical spiral illustrated in the Links section.

%H Bruno Berselli, <a href="/A193053/b193053.txt">Table of n, a(n) for n = 0..1000</a>

%H Bruno Berselli, <a href="http://www.base5forum.it/upload/a193053.jpg">Illustration of initial terms</a>.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).

%F E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - _G. C. Greubel_, Aug 19 2017

%F a(n) = A195020(n) + n + 1.

%F a(n) - a(-n-1) = A047336(n+1).

%F a(n+1) - a(-n) = A113804(n+1).

%F a(n+2) - a(n) = A047385(n+3).

%F a(n+4) - a(n) = A113803(n+4).

%F a(2*n) + a(2*n-1) = A069127(n+1).

%F a(2*n) - a(2*n-1) = A016813(n).

%F a(2*n+1) - a(2*n) = A016777(n+1).

%F a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).

%t Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* _Vincenzo Librandi_, Mar 26 2013 *)

%t LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* _Harvey P. Dale_, Jun 19 2020 *)

%o (PARI) for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));

%o (Magma) [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];

%Y Cf. A195020 (vertices of the numerical spiral in link).

%Y Cf. A001106, A022264, A033572, A144555, A152760, A158482, A158485, A185019, A195021, A195023-A195030, A195320, A198017 [incomplete list].

%K nonn,easy

%O 0,2

%A _Bruno Berselli_, Oct 20 2011 - based on remarks and sequences by _Omar E. Pol_