login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193010
Decimal expansion of the constant term of the reduction of e^x by x^2->x+1.
36
1, 7, 8, 3, 9, 2, 2, 9, 9, 6, 3, 1, 2, 8, 7, 8, 7, 6, 7, 8, 4, 6, 2, 3, 6, 9, 1, 6, 0, 9, 0, 1, 7, 0, 9, 7, 2, 5, 1, 0, 2, 9, 8, 6, 0, 6, 3, 3, 8, 4, 1, 2, 1, 7, 8, 7, 0, 7, 0, 0, 0, 7, 3, 6, 6, 8, 9, 5, 2, 5, 9, 7, 4, 0, 0, 2, 0, 3, 0, 2, 5, 3, 5, 4, 8, 2, 6, 1, 5, 6, 5, 0, 5, 6, 7, 1, 9, 4, 5, 2
OFFSET
1,2
COMMENTS
Suppose that q and s are polynomials and degree(q)>degree(s). The reduction of a polynomial p by q->s is introduced at A192232. If p is replaced by a function f having power series
c(0) + c(1)*x + c(2)*x^2 + ... ,
then the reduction, R(f), of f by q->s is here introduced as the limit, if it exists, of the reduction of p(n,x) by q->s, where p(n,x) is the n-th partial sum of f(x):
R(f(x)) = c(0)*R(1) + c(1)*R(x) + c(2)*R(x^2) + ... If q(x)=x^2 and s(x)=x+1, then
R(f(x)) = c(0) + c(1)*x + c(2)*(x+1) + c(3)*(2x+1) + c(4)(3x+2) + ..., so that
R(f(x)) = Sum_{n>=0} c(n)*(F(n)*x+F(n-1)), where F=A000045 (Fibonacci sequence), so that
R(f(x)) = u0 + x*u1 where u0 = Sum_{n>=0} c(n)*F(n-1), u1 = Sum_{n>=0} c(n)*F(n); the numbers u0 and u1 are given by A193010 and A098689.
Following is a list of reductions by x^2->x+1 of selected functions. Each sequence A-number refers to the constant represented by the sequence. Adjustments for offsets are needed in some cases.
e^x......... A193010 + x*A098689
e^(-x)...... A193026 + x*A099935
e^(2x)...... A193027 + x*A193028
e^(x/2)..... A193029 + x*A193030
sin x....... A193011 + x*A193012
cos x....... A193013 + x*A193014
sinh x...... A193015 + x*A193016
cosh x...... A193017 + x*A193025
2^x......... A193031 + x*A193032
2^(-x)...... A193009 + x*A193035
3^x......... A193083 + x*A193084
t^x......... A193075 + x*A193076, t=(1+sqrt(5))/2
t^(-x)...... A193077 + x*A193078, t=(1+sqrt(5))/2
sinh(2x).... A193079 + x*A193080
cosh(2x).... A193081 + x*A193082
(e^x)cos x.. A193083 + x*A193084
(e^x)sin x.. A193085 + x*A193086
(cos x)^2... A193087 + x*A193088
(sin x)^2... A193089 + x*A193088
FORMULA
From Amiram Eldar, Jan 18 2022: (Start)
Equals 1 + Sum_{k>=1} Fibonacci(k-1)/k!.
Equals (sqrt(5)-1) * (2*sqrt(5)*exp(sqrt(5)) + 3*sqrt(5) + 5) / (20 * exp((sqrt(5)-1)/2)). (End)
EXAMPLE
1.783922996312878767846236916090170972510...
MATHEMATICA
f[x_] := Exp[x]; r[n_] := Fibonacci[n];
c[n_] := SeriesCoefficient[Series[f[x], {x, 0, n}], n]
u0 = N[Sum[c[n]*r[n - 1], {n, 0, 200}], 100]
RealDigits[u0, 10]
CROSSREFS
Sequence in context: A133613 A296140 A194622 * A079082 A091683 A359009
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jul 14 2011
STATUS
approved