login
A193030
Decimal expansion of the coefficient of x in the reduction of e^(x/2) by x^2->x+1.
2
6, 7, 5, 9, 7, 7, 2, 4, 5, 8, 7, 2, 0, 5, 1, 0, 7, 7, 6, 6, 2, 2, 5, 9, 6, 3, 7, 4, 1, 7, 5, 6, 3, 0, 7, 0, 4, 1, 7, 1, 2, 0, 8, 6, 0, 5, 3, 2, 6, 1, 6, 1, 7, 4, 0, 0, 2, 1, 3, 8, 5, 4, 2, 3, 1, 3, 6, 0, 2, 9, 1, 8, 9, 5, 2, 8, 7, 7, 5, 3, 2, 1, 1, 4, 2, 1, 8, 5, 4, 2, 6, 8, 5, 0, 3, 7, 6, 6, 0, 9
OFFSET
0,1
COMMENTS
Reduction of a function f(x) by a substitution q(x)->s(x) is introduced at A193010.
FORMULA
From Amiram Eldar, Jan 18 2022: (Start)
Equals Sum_{k>=1} Fibonacci(k)/(k!*2^k).
Equals 2*exp(1/4)*sinh(sqrt(5)/4)/sqrt(5). (End)
EXAMPLE
0.675977245872051077662259637417563070...
MATHEMATICA
f[x_] := Exp[x/2]; r[n_] := Fibonacci[n];
c[n_] := SeriesCoefficient[Series[f[x], {x, 0, n}], n]
u1 = N[Sum[c[n]*r[n], {n, 0, 100}], 100]
RealDigits[u1, 10]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jul 14 2011
STATUS
approved