|
|
A199720
|
|
Decimal expansion of x>0 satisfying x^2-x*cos(x)=3*sin(x).
|
|
2
|
|
|
1, 6, 7, 5, 7, 1, 3, 3, 5, 8, 1, 7, 7, 0, 1, 5, 2, 7, 0, 4, 0, 5, 4, 3, 4, 8, 9, 1, 5, 2, 9, 3, 0, 4, 6, 0, 2, 9, 7, 1, 7, 0, 1, 7, 0, 7, 7, 6, 4, 1, 4, 8, 9, 9, 7, 3, 1, 7, 4, 6, 6, 7, 6, 8, 1, 8, 4, 0, 9, 5, 0, 6, 8, 2, 0, 7, 2, 6, 1, 6, 0, 3, 0, 4, 1, 5, 2, 6, 7, 8, 4, 1, 6, 2, 3, 6, 8, 4, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
|
|
EXAMPLE
|
x=1.67571335817701527040543489152930460297170170...
|
|
MATHEMATICA
|
a = 1; b = -1; c = 3;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|