|
|
A193008
|
|
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
|
|
2
|
|
|
1, 2, 10, 31, 78, 170, 339, 636, 1144, 1997, 3412, 5740, 9549, 15758, 25854, 42243, 68818, 111878, 181615, 294520, 477276, 773057, 1251720, 2026296, 3279673, 5307770, 8589394, 13899271, 22490934, 36392642, 58886187, 95281620, 154170784
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+1+n^3, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
|
|
LINKS
|
|
|
FORMULA
|
a(n)=4*a(n-1)-5*a(n-2)+a(n-3)+2*a(n-4)-a(n-5).
G.f.: (7*x^2-2*x+1)/((x-1)^3*(x^2+x-1)). [Colin Barker, Nov 12 2012]
|
|
MATHEMATICA
|
q = x^2; s = x + 1; z = 40;
p[0, x] := 1;
p[n_, x_] := x*p[n - 1, x] + n^3 + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|