|
|
A192668
|
|
Floor-Sqrt transform of superfactorials (A000178).
|
|
1
|
|
|
1, 1, 1, 3, 16, 185, 4988, 354134, 71109667, 42836123450, 81600285441318, 515548511098996334, 11283348939893661586501, 890385701589932763452676123, 262895016275494870674135139820802, 300629890583706167610723324054426034948
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
|
|
FORMULA
|
a(n) = floor(sqrt(Product_{k=0..n} k!)).
|
|
MATHEMATICA
|
Table[Floor[Sqrt[Product[k!, {k, 0, n}]]], {n, 0, 18}]
|
|
PROG
|
(Maxima) makelist(floor(sqrt(product(k!, k, 0, n))), n, 0, 12);
(PARI) a(n) = sqrtint(prod(k=0, n, k!)); \\ Michel Marcus, Apr 08 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|