login
Floor-Sqrt transform of superfactorials (A000178).
1

%I #17 Apr 09 2021 02:51:01

%S 1,1,1,3,16,185,4988,354134,71109667,42836123450,81600285441318,

%T 515548511098996334,11283348939893661586501,

%U 890385701589932763452676123,262895016275494870674135139820802,300629890583706167610723324054426034948

%N Floor-Sqrt transform of superfactorials (A000178).

%H Mohammad K. Azarian, <a href="http://www.ijpam.eu/contents/2007-36-2/9/9.pdf">On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials</a>, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

%F a(n) = floor(sqrt(Product_{k=0..n} k!)).

%t Table[Floor[Sqrt[Product[k!,{k,0,n}]]],{n,0,18}]

%o (Maxima) makelist(floor(sqrt(product(k!,k,0,n))),n,0,12);

%o (PARI) a(n) = sqrtint(prod(k=0, n, k!)); \\ _Michel Marcus_, Apr 08 2021

%Y Cf. A192660-A192665, A192668-A192685.

%K nonn

%O 0,4

%A _Emanuele Munarini_, Jul 07 2011

%E Definition corrected by _Georg Fischer_, Apr 08 2021