login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192471
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x)=1+x^n+x^(2n+1).
1
2, 5, 10, 24, 59, 150, 386, 1001, 2606, 6800, 17767, 46458, 121538, 318045, 832418, 2178920, 5703875, 14931950, 39090754, 102338337, 267921062, 701419680, 1836329615, 4807555634, 12586315394, 32951355125, 86267692666, 225851630136
OFFSET
1,1
COMMENTS
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
Empirical G.f.: -x*(2*x-1)*(x^3-3*x^2-x+2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). [Colin Barker, Nov 12 2012]
EXAMPLE
The first four polynomials p(n,x) and their reductions are as follows:
p(1,x)=1+x+x^3 -> 2+3x
p(2,x)=1+x^2+x^5 -> 5+6x
p(3,x)=1+x^3+x^7 -> 10+15x
p(4,x)=1+x^4+x^9 -> 24+37x.
From these, read
A192471=(2,5,10,24,...) and A087124=(3,6,15,37,...)
MATHEMATICA
Remove["Global`*"];
q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n+1);
Table[Simplify[p[n, x]], {n, 1, 5}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192471 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A087124 *)
CROSSREFS
Cf. A192232.
Sequence in context: A151514 A321007 A253013 * A001431 A324149 A054866
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 01 2011
STATUS
approved