|
|
A192469
|
|
Coefficient of x in the reduction by x^2->x+3 of the polynomial p(n,x)=1+x^n+x^(2n).
|
|
3
|
|
|
2, 8, 44, 224, 1178, 6200, 32786, 173600, 919988, 4877072, 25858754, 137115440, 727074530, 3855471416, 20444603516, 108412922240, 574888887530, 3048505597160, 16165538467442, 85722217226576, 454565670533252, 2410459729834544
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For an introduction to reductions of polynomials by substitutions such as x^2->x+3, see A192232.
|
|
LINKS
|
Table of n, a(n) for n=1..22.
|
|
FORMULA
|
Empirical G.f.: -2*x*(x-1)*(3*x-1)/((3*x^2+x-1)*(9*x^2-7*x+1)). [Colin Barker, Nov 12 2012]
|
|
EXAMPLE
|
The first four polynomials p(n,x) and their reductions are as follows:
p(1,x)=1+x+x^2 -> 4+2x
p(2,x)=1+x^2+x^4 -> 16+8x
p(3,x)=1+x^3+x^6 -> 61+44x
p(4,x)=1+x^4+x^8 -> 304+224x.
From these, read
A192468=(4,16,61,304,...) and A192469=(2,8,44,224,...)
|
|
MATHEMATICA
|
(See A192468.)
|
|
CROSSREFS
|
Cf. A192232, A192468.
Sequence in context: A264565 A018985 A018986 * A128656 A208044 A291697
Adjacent sequences: A192466 A192467 A192468 * A192470 A192471 A192472
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling, Jul 01 2011
|
|
STATUS
|
approved
|
|
|
|