login
A191473
Let a(1) = 3. For n > 1, a(n) is the smallest prime p > a(n-1) such that q = (a(n-1) + p)/4 is prime.
1
3, 5, 7, 13, 31, 37, 79, 109, 127, 157, 199, 229, 367, 397, 607, 661, 727, 829, 967, 997, 1039, 1213, 1399, 1693, 1759, 1789, 1999, 2053, 2143, 2221, 2383, 2389, 2503, 3229, 3319, 3469, 3823, 4093, 4159, 4357, 4591, 4597, 4639, 4789, 4903, 4933, 5431, 5581
OFFSET
1,1
COMMENTS
Corresponding values of q: 2, 3, 5, 11, 17, 29, 47, 59, 71, 89, 107.
MATHEMATICA
p=3; s={p}; Do[q=Prime[n]; If[PrimeQ[(p+q)/4], AppendTo[s, q]; p=q], {n, 3, 1000}]; s
nxt[n_]:=Module[{p=NextPrime[n]}, While[!PrimeQ[(n+p)/4], p=NextPrime[ p]]; p]; NestList[nxt, 3, 50] (* Harvey P. Dale, Nov 25 2013 *)
CROSSREFS
Cf. A126938.
Sequence in context: A359436 A225504 A089740 * A290482 A179633 A047933
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 27 2012
STATUS
approved