login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191471
E.g.f. (1+arctan(x))^arctan(x)
0
1, 0, 2, -3, 4, -30, 162, -252, 400, -27912, 200744, 705672, -4202296, -223340208, 1418238416, 29398266888, -114981277184, -8193860510784, 30889433635776, 2261786651427072, -3830504174333824
OFFSET
0,3
FORMULA
a(n)=sum(m=1..n, sum(j=0..(n-m)/2, (2^(2*j-n)*(n-2*j)!*stirling1(n-m-2*j,m)*(-1)^j*sum(i=0..2*j, (2^(i+n-2*j)*stirling1(i+n-2*j,n-2*j)*binomial(n-1,i+n-2*j-1))/(i+n-2*j)!))/(n-m-2*j)!));
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(1+ArcTan[x])^ArcTan[x], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 01 2011 *)
PROG
(Maxima)
a(n):=sum(sum((2^(2*j-n)*(n-2*j)!*stirling1(n-m-2*j, m)*(-1)^j*sum((2^(i+n-2*j)*stirling1(i+n-2*j, n-2*j)*binomial(n-1, i+n-2*j-1))/(i+n-2*j)!, i, 0, 2*j))/(n-m-2*j)!, j, 0, (n-m)/2), m, 1, n);
CROSSREFS
Sequence in context: A326829 A064858 A007114 * A354729 A305205 A356905
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 03 2011
STATUS
approved