The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326829 G.f. A(x) satisfies: A(x) = 1 - x * (1 - A(x/(1 + x)) / (1 + x)). 0
 1, 0, -1, 0, 2, -3, -4, 30, -55, -126, 1190, -3333, -4522, 90354, -417349, 290628, 9897158, -79200003, 253387112, 981776010, -18675127711, 120607895430, -211057884214, -4240412978637, 54534511617962, -318859368844866, -1539810740197, 21691972838975040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA E.g.f. A(x) satisfies: A(x) = 1 - x + Integral (exp(-x) * A(x)) dx. a(0) = 1, a(1) = 0; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n-1,k-1) * a(n-k). MATHEMATICA nmax = 27; A[_] = 0; Do[A[x_] = 1 - x (1 - A[x/(1 + x)]/(1 + x)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] nmax = 27; A[_] = 0; Do[A[x_] = 1 - x + Integrate[Exp[-x] A[x + O[x]^(nmax + 1)], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]! a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 27}] PROG (PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1 - x * (1 - subst(A, x, x/(1+x)) / (1+x))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Jul 10 2020 CROSSREFS Cf. A000587, A014619, A032347. Sequence in context: A226055 A028426 A024633 * A064858 A007114 A191471 Adjacent sequences:  A326826 A326827 A326828 * A326830 A326831 A326832 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jul 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 00:36 EST 2022. Contains 350410 sequences. (Running on oeis4.)