

A047933


Consider primes p with least positive primitive root g such that q=p+g is next prime after p; sequence gives values of q.


3



3, 5, 7, 13, 31, 61, 103, 109, 151, 157, 181, 199, 229, 257, 271, 277, 347, 349, 373, 421, 463, 661, 739, 823, 829, 977, 997, 1021, 1031, 1063, 1093, 1231, 1279, 1303, 1429, 1453, 1621, 1669, 1789, 1879, 1933, 1951, 1999, 2029, 2143, 2239, 2269, 2311
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.


LINKS

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


EXAMPLE

11 has primitive root 2 and 11+2 = 13 is prime after 11, so 13 is in sequence.


MATHEMATICA

Total/@Select[{#, PrimitiveRoot[#]}&/@Prime[Range[400]], NextPrime[ First[#]] == Total[#]&] (* Harvey P. Dale, Feb 18 2011 *)


CROSSREFS



KEYWORD

nice,nonn


AUTHOR



EXTENSIONS



STATUS

approved



