login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191463
E.g.f. (even powers only) cos(x)^(cos(x)-1)
0
1, 0, 6, 15, 1596, 28155, 2752266, 152499165, 18328556616, 2081907926295, 342948671262246, 63036450590713545, 14410958655520684956, 3796531150529363706915, 1173277778862573074248746, 415134737359852340707539405, 167697531024902643857808300816, 76517905142019788108453415876015
OFFSET
0,3
FORMULA
a(n)=2*sum(k=1..2*n, sum(r=0..2*n-k, (stirling1(r,k)*sum(j=1..r+k, ((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*(-1)^(r+k+n-j)*binomial(r+k,j))/2^j))/(r)!)), n>0, a(0)=1.
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[Cos[x]^(Cos[x]-1), {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Mar 19 2018 *)
PROG
(Maxima)
a(n):=2*sum(sum((stirling1(r, k)*sum(((sum((j-2*i)^(2*n)*binomial(j, i), i, 0, (j-1)/2))*(-1)^(r+k+n-j)*binomial(r+k, j))/2^j, j, 1, r+k))/(r)!, r, 0, 2*n-k), k, 1, 2*n);
CROSSREFS
Sequence in context: A307812 A354682 A280964 * A235943 A225304 A299709
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 03 2011
STATUS
approved