login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191461 E.g.f.: A(x) = Sum_{n>=0} binomial(x^n + n-1, n). 3
1, 1, 1, 2, 18, 24, 480, 720, 23520, 100800, 1874880, 3628800, 341953920, 479001600, 36739422720, 468583315200, 8960682931200, 20922789888000, 4289844445286400, 6402373705728000, 1012647189038284800, 18895538930171904000, 350378437544239104000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The definition of the e.g.f. A(x) is an application of the identity

Sum_{n>=0} (-1)^n*log(1 - q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y +n-1, n)*x^n at x=1, y=1, q=x.

LINKS

Table of n, a(n) for n=0..22.

FORMULA

E.g.f.: A(x) = Sum_{n>=0} (-1)^n * log(1 - x^n)^n/n!.

E.g.f.: A(x) = Sum_{n>=0} Sum_{k=0..n} |Stirling1(n,k)|*x^(n*k)/n!.

a(p) = (p-1)! for prime p.

EXAMPLE

E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 18*x^4/4! + 24*x^5/5! +...

Series expansions:

A(x) = 1 - log(1 - x) + log(1 - x^2)^2/2! - log(1 - x^3)^3/3! + log(1 - x^4)^4/4! +...+ (-1)^n*log(1 - x^n)^n/n! +...

A(x) = 1 + x + x^2*(x^2+1)/2! + x^3*(x^3+1)*(x^3+2)/3! + x^4*(x^4+1)*(x^4+2)*(x^4+3)/4! +...+ binomial(x^n + n-1, n) +...

Coefficients a(n)/n! in the series expansion of the e.g.f. begin:

A(x) = 1 + 1/2*x + 1/3*x^2 + 3/4*x^3 + 1/5*x^4 + 2/3*x^5 + 1/7*x^6 + 7/12*x^7 + 5/18*x^8 + 31/60*x^9 + 1/11*x^10 + 257/360*x^11 + 1/13*x^12 +...

which illustrates the property a(p)/p! = 1/p for prime p.

PROG

(PARI) {a(n)=local(A=1+x); A=sum(m=0, n, binomial(x^m+n-1 +x*O(x^n), m)); n!*polcoeff(A, n)}

(PARI) {a(n)=local(A=1+x); A=1+sum(m=1, n, (-1)^m*log(1-x^m +x*O(x^n))^m/m!); n!*polcoeff(A, n)}

(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}

{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, abs(Stirling1(m, k))*x^(m*k))/m!)); n!*polcoeff(A, n)}

CROSSREFS

Cf. A191460.

Sequence in context: A063430 A031104 A115042 * A098561 A141426 A101844

Adjacent sequences:  A191458 A191459 A191460 * A191462 A191463 A191464

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 08:44 EST 2021. Contains 349426 sequences. (Running on oeis4.)