login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191460
E.g.f.: A(x) = Sum_{n>=0} binomial(x^n, n).
1
1, 1, -1, 2, 6, 24, -480, 720, 13440, 100800, -1874880, 3628800, 22619520, 479001600, -36739422720, 468583315200, 6345334195200, 20922789888000, -4289844445286400, 6402373705728000, 363873320191180800, 18895538930171904000, -350378437544239104000
OFFSET
0,4
COMMENTS
The definition of the e.g.f. A(x) is an application of the identity:
* Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} binomial(q^n, n)*x^n at x=1, q=x.
FORMULA
E.g.f.: A(x) = Sum_{n>=0} log(1 + x^n)^n/n!.
E.g.f.: A(x) = Sum_{n>=0} Sum_{k=0..n} Stirling1(n,k)*x^(n*k)/n!.
|a(p)| = (p-1)! for prime p.
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! + 2*x^3/3! + 6*x^4/4! + 24*x^5/5! +...
Series expansions:
* A(x) = 1 + log(1 + x) + log(1 + x^2)^2/2! + log(1 + x^3)^3/3! + log(1 + x^4)^4/4! +...+ log(1 + x^n)^n/n! +...
* A(x) = 1 + x + x^2*(x^2-1)/2! + x^3*(x^3-1)*(x^3-2)/3! + x^4*(x^4-1)*(x^4-2)*(x^4-3)/4! +...+ binomial(x^n, n) +...
Coefficients a(n)/n! in the series expansion of the e.g.f. begin:
A(x) = 1 + x - 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/5*x^5 - 2/3*x^6 + 1/7*x^7 + 1/3*x^8 + 5/18*x^9 - 31/60*x^10 + 1/11*x^11 + 17/360*x^12 + 1/13*x^13 +...
which illustrates the property |a(p)/p!| = 1/p for prime p.
PROG
(PARI) {a(n)=local(A=1+x); A=sum(m=0, n, log(1+x^m +x*O(x^n))^m/m!); n!*polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); A=sum(m=0, n, binomial(x^m +x*O(x^n), m)); n!*polcoeff(A, n)}
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*x^(m*k))/m!)); n!*polcoeff(A, n)}
CROSSREFS
Cf. A191461.
Sequence in context: A274098 A324141 A277423 * A073475 A061774 A110729
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 02 2011
STATUS
approved