login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191463 E.g.f. (even powers only) cos(x)^(cos(x)-1) 0

%I

%S 1,0,6,15,1596,28155,2752266,152499165,18328556616,2081907926295,

%T 342948671262246,63036450590713545,14410958655520684956,

%U 3796531150529363706915,1173277778862573074248746,415134737359852340707539405,167697531024902643857808300816,76517905142019788108453415876015

%N E.g.f. (even powers only) cos(x)^(cos(x)-1)

%F a(n)=2*sum(k=1..2*n, sum(r=0..2*n-k, (stirling1(r,k)*sum(j=1..r+k, ((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*(-1)^(r+k+n-j)*binomial(r+k,j))/2^j))/(r)!)), n>0, a(0)=1.

%t With[{nn=40},Take[CoefficientList[Series[Cos[x]^(Cos[x]-1),{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Mar 19 2018 *)

%o (Maxima)

%o a(n):=2*sum(sum((stirling1(r,k)*sum(((sum((j-2*i)^(2*n)*binomial(j,i),i,0,(j-1)/2))*(-1)^(r+k+n-j)*binomial(r+k,j))/2^j,j,1,r+k))/(r)!,r,0,2*n-k),k,1,2*n);

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, Jun 03 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 08:13 EDT 2019. Contains 327168 sequences. (Running on oeis4.)