login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190705 a(n) = 6*n^2*(2*n + 1). 1
0, 18, 120, 378, 864, 1650, 2808, 4410, 6528, 9234, 12600, 16698, 21600, 27378, 34104, 41850, 50688, 60690, 71928, 84474, 98400, 113778, 130680, 149178, 169344, 191250, 214968, 240570, 268128, 297714, 329400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of partitions of 12*n + 1 into 4 parts.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 6 * A099721(n).

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=18, a(2)=120, a(3)=378. - Harvey P. Dale, Mar 20 2016

EXAMPLE

a(1)=18: there are 18 partitions of 12*1+1=13 into 4 parts:

  [1,1,1,10], [1,1,2,9], [1,1,3,8], [1,1,4,7], [1,1,5,6],

  [1,2,2,8],  [1,2,3,7], [1,2,4,6], [1,2,5,5], [1,3,3,6],

  [1,3,4,5],  [1,4,4,4], [2,2,2,7], [2,2,3,6], [2,2,4,5],

  [2,3,3,5],  [2,3,4,4], [3,3,3,4].

MATHEMATICA

Table[6n^2(2n + 1), {n, 0, 30}]

LinearRecurrence[{4, -6, 4, -1}, {0, 18, 120, 378}, 40] (* Harvey P. Dale, Mar 20 2016 *)

PROG

(MAGMA) [6*n^2*(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 14 2011

(PARI) a(n)=6*n^2*(2*n+1) \\ Charles R Greathouse IV, Aug 05 2013

CROSSREFS

Sequence in context: A293878 A044350 A044731 * A108648 A264360 A223046

Adjacent sequences:  A190702 A190703 A190704 * A190706 A190707 A190708

KEYWORD

nonn,easy

AUTHOR

Adi Dani, Jun 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 13:05 EDT 2021. Contains 345129 sequences. (Running on oeis4.)