OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 24).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 24).
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
From Colin Barker, Apr 22 2020: (Start)
G.f.: (1 + 11*x + 15*x^2 + 3*x^3) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6.
(End)
From Amiram Eldar, May 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 24*zeta(3) + 6*Pi^2 - 87.
Sum_{n>=0} (-1)^n/a(n) = 99 - Pi^2 - 96*log(2) - 18*zeta(3). (End)
E.g.f.: (24 + 408*x + 1020*x^2 + 772*x^3 + 224*x^4 + 26*x^5 + x^6)*exp(x)/4!. - G. C. Greubel, Oct 28 2022
MAPLE
a:=(n+1)^2*(n+2)^3*(n+3)/24: seq(a(n), n=0..36);
MATHEMATICA
Table[(n+1)^2*(n+2)^3*(n+3)/24, {n, 0, 30}] (* G. C. Greubel, Oct 28 2022 *)
PROG
(PARI) Vec((1 + 11*x + 15*x^2 + 3*x^3) / (1 - x)^7 + O(x^30)) \\ Colin Barker, Apr 22 2020
(Magma) [(n+1)^2*(n+2)^3*(n+3)/24: n in [0..30]]; // G. C. Greubel, Oct 28 2022
(SageMath) [(n+1)^2*(n+2)^3*(n+3)/24 for n in (0..30)] # G. C. Greubel, Oct 28 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 13 2005
STATUS
approved