login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108649
a(n) = (n+1)*(n+2)*(n+3)*(13*n^3 + 69*n^2 + 113*n + 60)/360.
4
1, 17, 111, 457, 1428, 3710, 8442, 17382, 33099, 59191, 100529, 163527, 256438, 389676, 576164, 831708, 1175397, 1630029, 2222563, 2984597, 3952872, 5169802, 6684030, 8551010, 10833615, 13602771, 16938117, 20928691, 25673642, 31282968
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
LINKS
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 25).
FORMULA
a(0)=1, a(1)=17, a(2)=111, a(3)=457, a(4)=1428, a(5)=3710, a(6)=8442, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 01 2012
G.f.: (1 + 10*x + 13*x^2 + 2*x^3) / (1 - x)^7. - Colin Barker, Apr 22 2020
E.g.f.: (1/360)*(360 + 5760*x + 14040*x^2 + 10440*x^3 + 2985*x^4 + 342*x^5 + 13*x^6)*exp(x). - G. C. Greubel, Oct 19 2023
MAPLE
a:=(n+1)*(n+2)*(n+3)*(13*n^3+69*n^2+113*n+60)/360: seq(a(n), n=0..36);
MATHEMATICA
Table[(n+1)(n+2)(n+3)(13n^3+69n^2+113n+60)/360, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 17, 111, 457, 1428, 3710, 8442}, 30] (* Harvey P. Dale, Jul 01 2012 *)
PROG
(PARI) Vec((1+10*x+13*x^2+2*x^3)/(1-x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2020
(Magma) [(13*n^3+69*n^2+113*n+60)*Binomial(n+3, 3)/60: n in [0..40]]; // G. C. Greubel, Oct 19 2023
(SageMath) [(13*n^3+69*n^2+113*n+60)*binomial(n+3, 3)/60 for n in range(41)] # G. C. Greubel, Oct 19 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 13 2005
STATUS
approved