OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 25).
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(0)=1, a(1)=17, a(2)=111, a(3)=457, a(4)=1428, a(5)=3710, a(6)=8442, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 01 2012
G.f.: (1 + 10*x + 13*x^2 + 2*x^3) / (1 - x)^7. - Colin Barker, Apr 22 2020
E.g.f.: (1/360)*(360 + 5760*x + 14040*x^2 + 10440*x^3 + 2985*x^4 + 342*x^5 + 13*x^6)*exp(x). - G. C. Greubel, Oct 19 2023
MAPLE
a:=(n+1)*(n+2)*(n+3)*(13*n^3+69*n^2+113*n+60)/360: seq(a(n), n=0..36);
MATHEMATICA
Table[(n+1)(n+2)(n+3)(13n^3+69n^2+113n+60)/360, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 17, 111, 457, 1428, 3710, 8442}, 30] (* Harvey P. Dale, Jul 01 2012 *)
PROG
(PARI) Vec((1+10*x+13*x^2+2*x^3)/(1-x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2020
(Magma) [(13*n^3+69*n^2+113*n+60)*Binomial(n+3, 3)/60: n in [0..40]]; // G. C. Greubel, Oct 19 2023
(SageMath) [(13*n^3+69*n^2+113*n+60)*binomial(n+3, 3)/60 for n in range(41)] # G. C. Greubel, Oct 19 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 13 2005
STATUS
approved