login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)*(n+2)*(n+3)*(13*n^3 + 69*n^2 + 113*n + 60)/360.
4

%I #23 Oct 19 2023 07:37:00

%S 1,17,111,457,1428,3710,8442,17382,33099,59191,100529,163527,256438,

%T 389676,576164,831708,1175397,1630029,2222563,2984597,3952872,5169802,

%U 6684030,8551010,10833615,13602771,16938117,20928691,25673642,31282968

%N a(n) = (n+1)*(n+2)*(n+3)*(13*n^3 + 69*n^2 + 113*n + 60)/360.

%C Kekulé numbers for certain benzenoids.

%H Colin Barker, <a href="/A108649/b108649.txt">Table of n, a(n) for n = 0..1000</a>

%H S. J. Cyvin and I. Gutman, <a href="https://doi.org/10.1007/978-3-662-00892-8">Kekulé structures in benzenoid hydrocarbons</a>, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 25).

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(0)=1, a(1)=17, a(2)=111, a(3)=457, a(4)=1428, a(5)=3710, a(6)=8442, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - _Harvey P. Dale_, Jul 01 2012

%F G.f.: (1 + 10*x + 13*x^2 + 2*x^3) / (1 - x)^7. - _Colin Barker_, Apr 22 2020

%F E.g.f.: (1/360)*(360 + 5760*x + 14040*x^2 + 10440*x^3 + 2985*x^4 + 342*x^5 + 13*x^6)*exp(x). - _G. C. Greubel_, Oct 19 2023

%p a:=(n+1)*(n+2)*(n+3)*(13*n^3+69*n^2+113*n+60)/360: seq(a(n),n=0..36);

%t Table[(n+1)(n+2)(n+3)(13n^3+69n^2+113n+60)/360,{n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1,17,111,457,1428,3710, 8442},30] (* _Harvey P. Dale_, Jul 01 2012 *)

%o (PARI) Vec((1+10*x+13*x^2+2*x^3)/(1-x)^7 + O(x^40)) \\ _Colin Barker_, Apr 22 2020

%o (Magma) [(13*n^3+69*n^2+113*n+60)*Binomial(n+3,3)/60: n in [0..40]]; // _G. C. Greubel_, Oct 19 2023

%o (SageMath) [(13*n^3+69*n^2+113*n+60)*binomial(n+3,3)/60 for n in range(41)] # _G. C. Greubel_, Oct 19 2023

%Y Cf. A108645, A108646, A108647, A108648, A108650.

%K nonn,easy

%O 0,2

%A _Emeric Deutsch_, Jun 13 2005